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Summary: The aim of the present paper is to discuss the options for studying the environmental contaminants

by the use of chemometric strategies. The problem with source apportioning of environmental data is

considered through the receptor modeling approach being very effective statistical tool in chemometrics. Data

sets from two major regions (region of Krakow, Poland and several Austrian cities) are classified, apportioned

and modeled by the use of cluster analysis, principal components analysis, self-organizing maps approach and

chemical mass balancing modeling. It is shown that in many cases the balancing could be achieved by already

classical methods like cluster and factor analysis but in other cases additional strategies contribute

significantly to the adequate modeling and interpretation process. It is our deep conviction that a reliable

source apportionment of environmental contaminants and correct estimation of the contribution of the

pollution sources to the total mass can be expected if various strategies are involved to one and the same

object of study. The methods mentioned are extremely important as information sources for risk assessment

observations and for decision making procedures.
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Introduction

The careful monitoring of natural systems turns to be one of the most important tool

not only for assessment of the real state of the human environment but also for taking

political decisions, often with global impact. However, environmental data possess high

variability due to various influences like geographical location of the monitoring sites,

dynamic conditions in the atmosphere and hydrosphere, geological limitations, and

many anthropogenic pollution sources. Usually, the output of the monitoring process is

a large sheet of numbers indicating concentration levels at the sampling sites involved.

Very often it is still generally accepted that satisfactory information could be extracted

if the monitoring results are simply compared with allowable threshold values officially

introduced by decision-making institutions. No need to say that this is an outdated

approach and point of view. The monitoring data obtained should be considered in their

integrity as a set of variables characterizing different environmental objects (natural
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water, air, and soil samples and sampling sites). As manual consideration of a large data

set is practically impossible, the only reasonable way of data classification, projection,

modeling, and reliable interpretation is the application of chemometric methods, of

intelligent data and exploratory analysis [1–10].

The intelligent data analysis performed by chemometrics includes, in principle, two

major approaches. In one of them the similarity between data parameters (eg between

sampling regions or between chemical parameters) is object of consideration, and, in the

other case, projection of multidimensional data on a simple plane is sought in order to

visualize links and relations within the set of monitoring results. But much more

important chemometric task seems to be the detection an internal balance of the

environmental data, which reveals relationships between the monitoring results obtained

and the really existing pollution sources and contaminants in a certain urban or rural

environment. Actually, this is what the politicians and the decision makers really want –

a simple and understandable presentation of the environmental balance: the level of

pollution for a region and the contribution of the separate pollution sources to the

formation of total pollution. Then is much easier to offer solution of the problem. The

decision makers usually neglect the sophisticated theoretical considerations and it

makes difficult to find acceptable problem solving.

The management of the water and air quality is not an easy problem. In general it

involves the identification of the sources of materials emitted into the water or air, the

quantitative estimation of the emission rates of the pollutants, the understanding of the

transport of substances from the sources to certain locations (eg coastal regions for

water phase or to downwind locations for the air), and the knowledge of physical and

chemical transformation processes that can occur during that transport. All of those

elements have to be put together into a chemometric model that can be used to estimate

the changes in observable airborne or water concentrations that might be expected to

happen if various actions are taken.

The aim of the present communication is to offer some simple schemes for risk

assessment and pollutant balance of data from environmental monitoring of aerosols.

Theoretical considerations

The classical efforts over the past thirty years in the mathematical modeling of

dispersion of pollutants in the environment have been significantly improved but there

are still many instances when the models are unsatisfactory to permit the full

development of effective and efficient environment quality management strategies.

Obviously, other approaches are necessary to assist in the identification of pollutants

and the apportionment of the observed pollutant concentrations in order to state that we

are able to balance the processes of contamination, to look for responsibility or to

prevent “hot spot” episodes. Such methods are often called receptor-oriented or receptor

models since they are focused on the behavior of the ambient environment at the point

of impact as opposed to the source-oriented dispersion models that focus on transport,

dilution, and transformation that occur beginning at the source and following the

pollutants to the sampling (receptor) site.
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The modern variety of receptor modeling methods is dedicated mostly to aerosol

particles analysis and there are convincing examples for their adequate use. All methods

are divided into two major categories: with previously known sources and without

known sources of pollution. For the first case the principle of mass balance is valid. It

states that the mass conservation is at hand and a mass balance analysis can be used to

identify and apportion sources of airborne particulate matted in the atmosphere. In order

to carry out calculations with this mode of balancing, one need a preliminary

constructed and measured set of really existing emission sources of pollution in the

neighborhood. For the other mode of action no preliminary sources of pollution have to

known in advance.

Balancing and apportionment without known source profiles

Very often it is difficult to obtain source profiles and it is inappropriate to use

composition data from other locations. Thus, it becomes necessary to extract in-

formation on the sources from the ambient monitoring data. There are a number of

factor analysis methods that can be used to identify and apportion pollutant sources

from the environment. The basic factor analysis approach is the already classical

chemometric method principal components analysis (PCA). However, PCA does not

provide a direct balancing and apportionment. Alternative approaches able to do this

include absolute principle components analysis (APCS), target transformation factor

analysis (TTFA), positive matrix factorization (PMF), UNMIX [11–15]. Although all of

these factor methods suffer from the problem of rotational degrees of freedom, each of

them has its specificity. Recent studies indicate that variations of artificial neural

networks can be used to provide information on the likely location and elemental source

profiles for a given receptor site.

Despite of the different names given to several of the variety of forms of eigenvector

analysis (factor analysis, PCA, principal components factor analysis, empirical ortho-

gonal function analysis, Karhunen – Loeve transform, etc.), all the methods have the

same basic objective – the compression of data into fewer dimensions and identification

of the structure of interrelationships that exists between the variables measured or the

cases in consideration. Thus, a new set of variables is introduced as linear combinations

of the initial (real) variables so that the observed variation in the system can be

reproduced by a smaller number of new (latent) variables. Since PCA can only be

performed on a set of samples in which the various sources contribute different amounts

of pollutant species to each sample, the balancing has to be expanded to a matrix

equation of the type Z = A � F, where Z is the matrix of sample vectors, A is the matrix

of loading vectors related to the source composition, and F is the matrix of scores that

are related to the contribution of that source type to the variance of the measured

variable.

After the pollution sources identification by the application of PCA, the next

calculational step in modeling and balancing of pollution impacts is the apportioning

itself. It is performed mostly by absolute principal components analysis (APCA). The

procedure introduced by Thurston and Spengler [11] is well developed and often

Receptor Modeling of Air Contaminants 671



applied for apportionment purposes. The method estimates source profiles and

contributions but a serious disadvantage is error propagation in centering and un-

centering of data. This balancing approach accepts that all sources have been identified

by the principal components analysis and all of them participate in the source

contribution procedure. As we shall see in some of the case studies, the source

identification by PCA is not always an easy and correctly solved problem.

Several interesting approaches for balancing environmental data have been develop-

ed by Paatero [13, 14]. One of them is called positive matrix factorization (PMF).

Initially the problem was solved iteratively using alternating least squares. In this case,

one of the matrices (known from PCA or factor analysis), A or F, is taken as known and

the chi-squared is minimized with respect to the other matrix as a weighted linear least

square problem. Then the roles of A and F are reversed so that the matrix that has just

been calculated is fixed and the other is calculated by minimizing Q, the process then

continues until convergence.

There are many evidences that artificial neural networks (ANN) are also used to look

at the receptor modeling problem when the source profiles are not known. The

self-organizing ANN method of Kohonen [16] has been presented for local scale

problems with one sampling site and for multiple sampling sites. This method can

analyse a three dimensional data block as a whole and yield both source profiles and

geographical information on the identified emission sources. In the Results and

Discussion section an application of the method of self-organizing maps (SOM) will

illustrate the opportunities for pollution balancing interpretation for a large-scale case

study.

Self-organizing maps (SOMs) are a data visualization technique invented by

Professor Teuvo Kohonen, which reduce the dimensions of data through the use of

self-organizing neural networks. The problem that data visualization attempts to solve is

that humans simply cannot visualize high dimensional data as is so techniques are

created to help us understand this high dimensional data. The way SOMs go about

reducing dimensions is by producing a map of usually 1 or 2 dimensions, which plots

the similarities of the data by grouping similar data items together. So SOMs

accomplish two things, they reduce dimensions and display similarities.

The first part of a SOM is the data. The idea of the self-organizing maps is to project

the n-dimensional data into something that can be better understood visually (it would

be a 2 dimensional image map). The second component to SOMs are the weight

vectors. Each weight vector has two components to them. The first part of a weight

vector is its data. This is of the same dimensions as the sample vectors and the second

part of a weight vector is its natural location.

The way that SOMs go about organizing themselves is by competeting for

representation of the samples. Neurons are also allowed to change themselves by

learning to become more like samples in hopes of winning the next competition. It is

this selection and learning process that makes the weights organize themselves into

a map representing similarities.
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Balancing and apportionment with known source profiles

In principle, a mass balance equation can be written to account for all m chemical

species in the n samples as contributions from p independent sources:

xij = � cik � skj (for k = 1 to p)

where xij is the i-th elemental concentration measured in the j-th sample, cik is the

gravimetric concentration of the i-th element in material form from the k-th source, and

sik is the airborne mass concentration of material from k-th source contributing to the

j-th sample.

There exist a set of natural physical constraints on the system that must be considered

in developing any model for identifying and apportioning the sources of airborne

particulate mass. The fundamental, natural physical constraints that must be obeyed are:

1. The original data must be reproduced by the model; the model must explain the

observations.

2. The predicted source compositions must be non-negative; a source cannot have

a negative percentage of an element.

3. The predicted source contributions to the aerosol must all be non-negative;

a source cannot emit negative mass.

4. The sum of the predicted elemental mass contributions for each source must be

less than or equal to total measured mass for each element; the whole is greater

than or equal to the sum of its parts.

When modeling with known source profiles is used, the most common approach is,

undoubted, the chemical mass balance (CMB) method [17].

The following set of linear equations expresses the essence of the CMB (it resembles

entirely the idea of a mass balance model mentioned previously):

cik = �aij sjk (for j = 1 to m),

where cik, the concentration of chemical species j in the particulate sample at receptor

site k, equals the sum over m source types of the product of aij, the relative

concentration of chemical constituent i in the fine particle emission from source j,

multiplied by sjk, the increment to total fine particulate mass concentration at receptor

site k originating from source j. The system of equations states that the ambient

concentration of each mass balance species must result only from the m sources

included in the model and that no selective loss or gain of species i occurs in transport

from the source to the receptor site. Therefore, the selection of mass balance compounds

must be limited to:

1. Species for which all major sources are included in the model.

2. Species that do not undergo selective removal by chemical reaction or other

mechanisms over the time scale for transport between the source and the receptor site.

3. Species, which are not significantly formed by chemical reactions in the

atmosphere.

Source profiles are the mass abundances (fraction of total mass) of a chemical

species in source emissions. They are intended to represent a category of source rather
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than individual emitters. The number and meaning of these categories is limited by the

degree of similarity between the profiles. Mathematically, this similarity is termed

“collinearity”, which means that two or more of the CMB equations are redundant and

the set of equations cannot be solved. Owing to measurement error, however, CMB

equations are never completely collinear in a mathematical sense. When two or more

source profiles are “collinear” in a CMB solution, standard errors on source con-

tributions are often very high. Determining the degree of collinearity is one of the main

objectives of CMB validation.

The generalized categories of the source profiles resemble the emission inventories in

a certain location like “coal-burning” category, “vegetative burning and cooking”

category, “diesel exhaust” category etc. For each of the chosen source profiles a series

of measurements must be performed in order to collect the source profiles data set. The

organization of the measurements, the chemical analysis of the species, and the error

estimations is a quite complex experimental task.

Another very important part of the data preparation for the CMB modeling is the

performance of the receptor measurements. They could be considered as a subset of the

source profile measurements and must include at least those species in the source

profiles that allow sources to be separated (“tracer” species).

After data collection one has to take into account the fundamental assumptions,

potential deviations, and the validation options of the CMB procedure, namely:

1. The compositions of the source emissions have to be constant over the period of

ambient and source sampling.

2. The chemical species do not react with each other, ie they act linearly.

3. All sources with a potential for significant contributing to the receptor have been

identified and have had their emissions characterized.

4. The source compositions are linearly independent of each other.

5. The number of sources or source categories is less than or equal to the number of

chemical species.

6. Measurement uncertainties are random, uncorrelated, and normally distributed.

All these assumptions are fairly restrictive and will never be totally complied with in

actual practice. Fortunately, the CMB model can tolerate deviations from these

assumptions, though these deviations increase the stated uncertainties of the source

contribution estimates. Besides, there are a lot of optimization studies, which minimize

the effect from the possible deviations.

The CMB estimates are finally tested to see how sensitive they are to the various

input data. It has to be mentioned that the calculation procedure is offered as a software

package by EPA (CMB 8.2 as last version).

Experimental

Data collection for the case studies

The apportioning and balancing problem considered above is illustrated by two

major case studies – in Krakow area, Poland and in Vienna, Austria.
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Integrated emissions, air quality and health impact
– case study Krakow

In 2004 and 2005 a big research project concerning the air quality in the area of

Krakow, Poland was launched sponsored by the European Commission. The organiza-

tion of the project was coordinated by the Joint Research Center (JRC), Institute for

Environment and Sustainability (IES), Transport and Air Quality Unit. Many Polish

academic and governmental institutions as well as groups of researchers from many

European countries and from US EPA participated to various extent in the integrated

project with full title: “Krakow Integrated Project: Particulate Matter: From Emissions

to Health Effects”. Finally, a workshop in Krakow took place to present the outcome of

the project.

In brief, the main goal of this project was in line with European Environment and

Health and the Urban Environment thematic strategies to develop an integrated

approach to assess the effects of toxic emissions, the resulting air quality and their

impacts on human health. In a stepwise approach a methodology is being developed in

a confined and well-characterized location. The city of Krakow and its surroundings

comprise an area with typical emission sources suitable for a large-scale study. Coal in

this region is still widely used in residential heating appliances.

Six sampling sites were chosen for data collection (PM10 particulate matter),

conditionally named AGRI (rural site), INDU (industrial site), TRAF (traffic site),

POLI (urban site), ZAKO (site in Zakopane, considered to be non-polluted by industrial

sources), and HOUSE (in-door pollution measurements). For apportioning purposes

altogether 85 cases were involved for different time periods. The chemical species

determined in the particulate matter were quite a lot – soluble major ions, silica,

aluminum, heavy metals, soot, organic carbon (mainly polyaromatic hydrocarbons or

PAHs). A variety of analytical methods were applied to determine the species

concentrations. The techniques of sampling, sample preparation, and chemical analysis

are not the aims of the presentation and are only mentioned.

Case study Austrian Urban Air Quality

Since many years the group of atmospheric chemistry, Institute of Chemical

Technologies and Analytics, Technical University of Vienna, headed by Prof. Hans

Puxbaum is actively engaged in large-scale projects dealing with the Vienna air quality

as well as the air quality in other large Austrian cities. These projects are financed and

supported by the Vienna municipality and all local authorities. In all of the projects

a chemometric data classification, modeling and interpretation is necessary done in

almost all cases by our research group of chemometrics, Faculty of Chemistry,

University of Sofia.

In the results section some cases will be presented from the project “Quellenanalyse

PM10 Belastung”. They illustrate the inevitable role of chemometrics in pollutants

balancing.
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In brief, particulate matter PM10 was collected from 10 urban sites in and around the

city of Vienna or in Graz and Linz. Major (soluble) ions, heavy metals and

carbonaceous content were analytically determined for a two-year period.

Results and discussion

Case study Krakow

The data available were treated initially by cluster analysis and PCA (in addition, the

identified latent factors were included in the Thurston – Spengler apportioning

procedure with APCS).

In Fig. 1 the hierarchical dendrogram for clustering (z-transformed input data,

Ward’s method of linkage, squared Euclidean distance as similarity measure) of the

chemical species (variables) for all samples (sampling sites, the whole sampling period,

sum of all PAH chemical compounds) is shown. It can be readily seen that two major

clusters are formed: the one of them collects those species, which are known tracers for

coal combustion like soot, organic carbon, bromine or for secondary emissions like

ammonium, sulfate, nitrate; the second one includes typical soil and road dust markers

like aluminium, titanium, silica, iron and calcium.

Using cluster classification we get the initial information about the possible major

emitters in the region named by us as soil and road dust source and combustion and

secondary emission source.
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Fig. 1. Hierarchical dendrogram for all Krakow data (chemical variables linkage)



In the further identification and apportioning effort, PCA of the same data set was

performed. Next three figures (Figs. 2–4) illustrate the physical meaning of the

identified latent factors by indicating the significant factor loadings for each latent

factor. It was found that three latent factors explain more than 85 % of the total variance

of the system. As in the case with cluster analysis, we were able to give conditional

names to the latent factors as follows: PC 1 – “soil and road dust”; PC 2 – “secondary

emission” and PC 3 – “combustion by stationary and mobile sources”.
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In this chemometric analysis we achieved a slightly better resolution of the impact of

the possible local pollutants – three instead of two factors influence the balancing

mechanism. However, the analysis of the latent factor structure indicates again, that

PC1 is by no means only “soil and road dust” source but a more complex one with

possible supplement of combustion or traffic sources to the dust one (tracers for

combustion are obviously lead, cadmium, vanadium). Further, PC2 reveals not only

secondary emissions impact but possible combustion products transport. Finally, PC3

shows traffic addition (part of PAHs are vehicle combustion tracers; the same holds true

for soot) to the coal combustion factor, which is a dominant local pollutant.

The performance of the source apportionment by the Thurston – Spengler regression

method using absolute principle components scores for the total mass (TM) of the

PM10 aerosols gave the numbers shown in Fig. 5.

The balancing procedure indicates that the highest contribution to the aerosol total

mass has the secondary emission source (61%), followed by the combustion source
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(26%) and the lowest contribution goes to the soil and road dust factor (13%). It has to

be stressed that this is a logical balancing keeping in mind that, for instance, coal

combustion emitters are involved in secondary emission and in the soil dust latent

factor. Thus, the coal combustion proves to be the main pollutant in the whole Krakow

area.

In order to get specific information from the different sampling sites a self-

-organizing map (SOM) data classification was performed. It has to be reminded that

the general idea of the SOM method is to map the data from a higher dimensional space

onto a lower, usually, two-dimensional (2D) space. The latter consists of i nodes

arranged in the 2D plane as neighboring hexagons or squares. The mapping preserves

the topology of the original data space. In this way the 2D plane (called U matrix)

resembles the space reduction and the cluster abilities of SOM. The topological

neighborhood concept (taking into account distances between the nodes) as well as the

mapping of the original data onto a grid of nodes allows better visualization and further

interpretation.

The map unit hits (distribution of cases in each sampling site) in each map node are

presented in Fig. 7. The map unit hits and the component planes visualize clearly the

relation between objects and variables, as it will be commented later. The unified

distance matrix (U matrix) represents also the distances between the units. The high

values indicate a cluster border; uniform areas or low values indicate the clusters

themselves. The U matrix could be also used for classification of the sampling sites.

This approach lacks the drawback of the classical clustering, namely once the object is

linked to a certain cluster, it remains linked for the rest of the clustering process.

A training algorithm constructs the nodes in SOM in order to represent the whole data

set and their weights are optimized at each iteration step. Thus, the optimal topology is

guaranteed. In our study the non-hierarchical K-means classification algorithm was

applied. The different values of k (predefined number of clusters) were tried and the

sum of squares for each run was calculated. Finally, the best classification with the

lowest Davies-Bouldin index (also shown graphically in Fig. 6) is chosen. It is seen that

five clusters configuration has the lowest index.
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The SOM classification obtained was then compared with the real data from the

starting data set (all sites, all measurements). The results are marked in Figs. 7–11 for

each sampling site. For better interpretation the real concentration of tracer species are

given along with the classification results. Thus, a unexpectedly reasonable in-

terpretation of some of the pollution events and sources is achieved.

Altogether 85 observations for 5 sampling sites were available (site AGRI – 15, site

INDU – 15, site POLI – 15, site TRAF – 15, site ZAKO – 13, sites HOUSE for indoor

pollutants – 12). Their SOM classification has indicated as follows:

– Group 1 (cluster 1): it consists of totally 44 cases (the number for each site is

presented in Fig. 7). Almost all indoor cases (11 out of 12) belong to this cluster.

A very high similarity between in- and outdoor measurements is observed (33

outdoor cases out of all 73 are included in Group 1). The concentration levels of
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polluting species for all cases, which belong to this group, are the lowest in the set.

Probably, this group could be conditionally named “background cluster” as it

a subject of non-polluting impacts;

– Group 2 (cluster 2): totally 20 cases are included in the cluster of similarity (again

the numbers of cases from each site is indicated in Fig. 8). It is characterized by

low concentrations of PAHs but increased concentrations of secondary aerosols,

especially for the time period between 29.01. and 4.02. 2006 (15 cases out of all

20 fall into this period). Therefore, this is a typical case for “hot spot” event with

dominating role of the “secondary emission” source of pollution due probably to

specific meteorological reasons (low ambient temperature and north-west wind

direction);

– Group 3 (cluster): it consists of a small number of cases, only 7 in total (Fig. 9),

five of them from the ZAKO (Zakopane) site. Obviously, the situation resembles a

strictly local event characterized with enhanced concentrations of carbonaceous

species (elemental and organic carbon). If the sampling period for the cases into
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consideration (15–17.01. and 5–6.02.2006) is compared with the ambient tem-

perature, it could be found that these are the days with very low temperatures. The

“coal combustion” source is probably responsible for the events due to increased

appliance of coal for domestic heating in Zakopane;

– Group 4 (cluster 4): nine cases are involved (exact numbers for each case are

given in Fig. 10) and this is a typical “urban” or “anthropogenic” group related to

the combined polluting impact of secondary aerosol emissions, local traffic, and

mineral dust (indications for this balancing are the increased concentrations of

secondary emission species (ammonium, sulfate, nitrate) and dust tracers like

calcium, silica and aluminum;

– Group 5 (cluster 5): this is a second “urban” cluster, which comprises only urban

sites (Fig. 11). Highest concentrations of dust components are observed within a

small sampling period (16–17.01.2006). It is probably a strictly local event due to

air re-circulation, which is partially confirmed by meteorological data and back

trajectory analysis.
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Finally, chemical mass balancing with previously know emission source profiles was

performed on the Krakow air-monitoring data. In the first step a list of source profiles

was considered. The possible major sources in the Krakow are over 20 (among them

iron ore sinter plant, blast furnace, cement kiln – coal fired, coal combustion power

plant, coke gas, coal combustion, commercial boilers with coal combustion, residential

coal combustion, residential wood combustion etc.). In addition to own measurements

of the chemical composition of the source profiles, literature sources were adapted

(secondary ammonium, sulfate, nitrate; road salt, road pavements, tire debris, rock and

crust material, and vehicle/tires/brakes composite). A multitude of combinations of

source profiles were subjected to CMB calculations including the profiles that represent

the emissions most likely to influence receptor concentrations. Profiles of similar

chemical composition were often found to be collinear and automatically rejected by the

CMB 8.2 software package. Five sources remained robustly significant in all the

simulations and were finally retained for the source apportionment:

1. Coal fired small residential stoves or boilers;

2. Secondary emissions (ammonium, sulfate, nitrate);

3. Vehicle/traffic source;

4. Re-suspension of road dust (rock and/or pavement combined with road salt);

5. Coal fired small boilers.

It could be readily seen that the source profiles chosen for CMB calculations

correspond in general with the sources identified by cluster analysis, PCA, and SOM. It

is, however expected that CMB will give a better resolution of the apportionment both

by a more reasonable source collection (and identification) and by the introduction of

more tracers.
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In Fig. 12 the source contribution estimates by CMB to the total aerosol mass at all

five sampling sites from the Krakow region except for the in-door samples (AGRI,

INDU, POLI, TRAF, and ZAKO) are given.

Various monitoring events are presented in the figure-averages for all days for one of

the sampling session; average for days considered as “clean” (TM less than 70 �g/m3);

average for episode days being subject to polluting events (TM higher than 70 �g/m3).

In all situations the dominant polluting source is the residential coal combustion in

stoves and boilers. Secondary emissions contribute also significantly to the total mass

for all events. The same conclusion holds true for daily source contribution estimates.

The traffic and re-suspension contributions complete the balancing since the con-

tribution of industrial pollution is quite low.

Case study Austria

The problem and its solution does not seem quite different for the second case study,

which involves more than 10 sampling sites in the three largest Austrian cities – Vienna,

Graz and Linz. The principles of sampling and aerosol analysis do not differ

substantially from that for Krakow. The sampling sites in the three cities are mostly

urban and no organic components are included in the chemical analysis procedure.

Thus, except major soluble ions and heavy metals, the input data sets offered soot,

organic carbon, and carbonate.

Monthly averages were used for the apportioning procedures. Most of the sites are

from Vienna, one site is from Graz, and one – from Linz. The sampling allowed

separation of the aerosols in two categories PM 10 (coarse fraction) and PM 2.5 (fine

fraction). The data set were subject to cluster analysis, principal components analysis

and chemical mass balance modeling. Since the volume of the work done is too big to

be presented in full scale, only several chosen examples will illustrate the main goal of

the case study – to offer a good apportioning strategy as required by the European

commission.

In the previous case study the main features of the chemometric approaches

informing on polluting sources in a certain region and their contributions to the

formation of the aerosol total mass were discussed. In this second case study we would

like to stress on some possible problems in the apportioning procedure. As illustrative

examples the PM10 balancing in Vienna (site AKH, typical urban site, downtown) and

in Linz (seriously polluted industrial region) were chosen.

In Fig. 13 the hierarchical dendrogram (Ward’s method of linkage, z-transformed

input data, squared Euclidean distance as similarity measure) as graphical projection of

the cluster analysis for data from AKH site (PM10) is presented (linkage of chemical

variables).

Four clusters are formed but it is not simple to interpret the relations between the

chemical species. For instance, sulfate is clustered along with chromium and oxalate in

a well-defined group. The common origin as a prerequisite for the linkage is doubtful.

The same holds true for the other clusters where some of the links are logical from
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environmetric point of view (ammonium, nitrate), others – not (potassium, carbon-

aceous species).

Next figure (Fig. 14) shows the dendrogram (same method of clustering) of the Linz site.
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The three clusters formed contain chemical species whose common origin (natural or

anthropogenic source) is quite unbalanced (organic carbon linkage with some heavy

metals for instance).

The next step in searching for balance and apportionment was the performance of

PCA. In Tables 1 and 2 the factor loadings for data sets from AKH and Linz are given.

The statistically significant loadings are marked. The Varimax rotation mode on scaled

data was applied in the chemometric analysis. The number of latent factors was

traditionally chosen by the scree-plot view, by the values of the total variance explained

by the latent factors and by the condition for eigenvalue for the significant factors to be

higher than 1.

Again, we get very complex latent factors and their correct interpretation is difficult.

The possible identification of the latent factors is presented under the tables and it

is readily seen that they are of mixed origin. If one accepts that PC1 for site AKH

is combination of traffic and coal combustion polluting sources, then the real

apportionment will be handicapped since no division between traffic impact and coal

combustion impact will be possible. The same holds true for the other identified latent

factors.

Table 1

AKH PM10 Factor loadings

Species PC1 PC2 PC3 PC4

BC 0.906 0.196 0.192 0.186

OC 0.654 0.369 0.342 –0.254

NA 0.698 0.133 0.569 –0.062

NH4 0.620 0.720 0.054 –0.252

K 0.476 0.544 0.499 –0.293

CA 0.103 –0.226 0.633 0.606

MG 0.1782 0.0640 0.883 0.335

CL 0.687 0.140 0.565 –0.130

NO3 0.774 0.224 0.483 –0.139

SO4 0.065 0.964 –0.135 –0.002

AS 0.275 0.734 0.397 0.110

CD 0.608 0.677 0.018 –0.171

CO 0.251 –0.140 0.089 0.901

CR –0.260 0.032 –0.876 0.324

CU 0.361 0.388 –0.141 0.604

FE –0.277 –0.369 –0.436 0.628

MN –0.282 0.016 0.022 0.897

NI 0.878 0.107 0.272 0.151

PB 0.707 0.645 –0.133 –0.141

V 0.7291 0.650 0.172 0.001

ZN 0.865 0.365 0.095 0.197

Expl. Var. % 32.8 20.7 17.9 16.1
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The four latent factors could be identified as follows:

– PC1: (32.8%): BC, OC, Na, Cl, NO3, Ni, Pb, V, Zn, Cd – Combination of traffic

and coal combustion sources??

– PC2: (20.7%): NH4, SO4, As, K – Secondary emission source??

– PC3: (17.9%): Mg, Ca, Cr – Road dust source ??

– PC4: (16.1%): Mn, Co, Fe , Cu – Mineral dust source??

Absolutely same conclusions could be offered with the site from Linz. The case is

even worse and the identification of the polluting sources impossible. This is obviously

due to the strongly polluted atmosphere in the region of Linz.

Table 2

LINZ PM10 Factor loadings

Species PC1 PC2 PC3

BC 0.613 0.606 0.439

OC 0.818 0.412 0.2941

NA 0.504 0.135 0.776

NH4 0.707 0.181 0.654

K 0.919 0.084 0.283

CA 0.147 0.346 0.881

MG 0.3686 0.522 0.716

CL 0.706 0.308 0.601

NO3 0.464 0.338 0.761

SO4 0.877 0.043 0.4297

AS 0.862 0.251 0.399

CD 0.839 0.106 0.316

CO –0.056 0.922 0.276

CR 0.143 0.897 0.156

CU 0.310 0.866 0.090

FE 0.153 0.955 0.123

MN 0.294 0.823 0.403

NI 0.500 0.778 0.355

PB 0.878 0.330 0.265

V 0.729 0.431 0.472

ZN 0.868 0.176 –0.074

Expl. Var. % 39.4 29.5 22.7

Three latent factors are found:

– PC1: (39.4%): BC, OC, NH4, K, Cl, SO4, As, Cd, Pb, V, Zn – Traffic,

combustion, secondary emissions??

– PC2: (29.5%): Co, Cr, Cu, Fe, Mn, Ni – Undefined??

– PC3: (22.7%): Na, Ca, Mg, NO3 – Road dust ??

The only possible decision in this case is the application of CMB with preliminary

known source profiles. In this case study it was not possible to carry out experiments for

determination of the local pollution source profiles and they were chosen from literature
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source, mainly from USA. A list of source profiles offered by US EPA (Speciate 3.2

data bank) was thouroughly tested and compared to local conditions. Finally, 8 source

profiles were chosen (steel production, crustal dust, Diesel combustion, paved road dust,

petrol combustion, brake debries, coke combustion, wood combustion) for CMB

modeling. The profiles were checked for collinearity and only non-correlated sources

were included in the calculation. The calculational results are summarized and averaged

for quarters.
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Next two figures (Figs. 15 and 16) show the percent contribution of each source to

the total aerosol mass at the two sites.

For the Vienna site (Fig. 15) paved road and crustal dust are the main contributors to

the total mass both in summer and winter periods. The traffic source (diesel combustion

vehicles) is also important polluting source. A substantial part of the total mass remains

unexplained since no measurements of silica, aluminum and other major components

are done. The models miss also the role of secondary emissions but they can be easily

attributed to the unexplained part.

For the Linz site we detect the same major contributors but, additionally, a steel

production source influences the total mass apportioning. The unexplained part of the

total mass includes the unavoidable secondary emissions impact.

Thus, despite the fact that the construction of the source profiles was to some extent

artificial, the CMB modeling made the source apportioning very realistic and cor-

responding to the local environmental conditions.

Conclusion

The chemometric approaches and strategies as applied to monitoring data sets deliver

very abundant and specific information about details in the environment, which usually

remain hidden behind the figures of real concentrations and allowable thresholds. The

present study discloses some better options for problem solving and decision making in

source apportionment and balancing of environmental pollutants. The combination of

already classical chemometric approaches like cluster and factor analysis with more

advanced strategies like SOM or receptor modeling with previously known pollution

source profiles by CMB gives a complete idea of the contribution of pollutions to the

“hot spots” events in a region and the impact of each separate source to the total

pollution.

Acknowledgement

The author would like to express his sincere gratitude to Dr. Stefan Tsakovski, University of Sofia, Prof.

Dr. Hans Puxbaum, Vienna Technical University, and Dr. Bo Larsen, JRC-IES, Italy for the help in

preparation of this work.

References

[1] Simeonova P., Bogoeva L., Kashukeeva K. and Dimitrova D.: Ann. Univ. Sofia Fac. Chem., 2006,

98/99, 223–231.

[2] Simeonova P. and Lovchinov V.: J. Optoelec. Adv. Mater., 2005, 7, 419–423.

[3] Simeonova P.: Ecol. Chem. Eng., 2006, 13, 1021–1032.

[4] Simeonova P., Simeonov V. and Andreev G.: Centr. Europ. J. Chem., 2003, 2, 121–136.

[5] Samara C., Kouimtzis T., Tsitoridou R., Kanias G. and Simeonov V.: Atmos. Environ., 2003, 37, 41–54.

[6] Simeonov V., Tsakovski S., Lavric T., Simeonova P. and Puxbaum H.: Microchim. Acta, 2004, 148,

293–298.

[7] Stanimirova I. and Simeonov V.: Chemom. Intell. Lab Syst., 2005, 77, 115–121.

[8] Simeonova P.: Ann. Univ. Sofia Fac. Chem., 2007, 100, (in press).

690 Vasil Simeonov



[9] Simeonova P., Sarbu C., Spanos Th., Simeonov V. and Tsakovski S.: Centr. Europ. J. Chem., 2006, 4,

68–80.

[10] Simeonov V.: Environmetric Strategies to Classify, Interpret and Model Risk Assessment and Quality of

Environmental Systems, [in:] Technological Choices for Sustainability, Sikdar S., Glavic P. and Jain R.

(eds.), Springer, Berlin–Heidelberg 2004, pp. 147–164.

[11] Thurston G. and Spengler J.: Atmos. Environ. 1985, 19, 9–26.

[12] Hopke P.: The Mixture Resolution Problem Applied to Airborne Particle Source Apportionment, [in:]

Chemometrics in Environmental Chemistry, Einax J. (ed.), Springer Verlag, Heidelberg 1995, pp. 47–86.

[13] Paatero P. and Tapper U.: Chemom. Intell. Lab. Syst., 1993, 18, 183–194.

[14] Anttila P., Paatero P., Tapper U. and Jarvinen O.: Atmos. Environ. 1995, 29, 1705–1709.

[15] Hopke P. (ed.): Receptor Modeling for Air Quality Management, Elsevier Science, Amsterdam 1991.

[16] Kohonen T.: Self-Organizing and Associative Memory, 3rd Edition, Springer Verlag, New York 1989.

[17] Watson J., Chow J. and Pace T.: Chemical Mass Balance, [in:] Receptor Modeling for Air Quality

Management, Hopke P. (ed.), Elsevier Science Publishers, Amsterdam 1991, pp. 83–116.

MODELOWANIE RECEPTORÓW POLUTANTÓW POWIETRZA

S t r e s z c z e n i e

Przedyskutowano mo¿liwoœci zastosowania metod chemometrycznych do badañ zanieczyszczenia œro-

dowiska z wykorzystaniem strategii chemometrycznych. Problem okreœlenia Ÿród³a danych œrodowiskowych

jest rozwa¿ony za pomoc¹ modelowania receptora, bêd¹cego bardzo efektywnym narzêdziem statystycznym

w chemometrii. Dane pomiarowe dotycz¹ce dwóch regionów (miasta Krakowa, Polska i kilku miast

austriackich) zosta³y opracowane za pomoc¹ analizy skupieñ, analizy g³ównych sk³adowych, map samo-

organizuj¹cych i bilansu mas chemicznych. Wykazano, ¿e w wielu przypadkach bilansowanie mog³oby byæ

dokonane klasycznymi metodami, jak skupienia i analiza czynnikowa, ale w innych przypadkach dodatkowe

metody przyczyniaj¹ siê znacz¹co do odpowiedniego modelowania i interpretacji wyników. Zastosowanie

ró¿nych metod do analizy wyników badañ pozwali na okreœlenie œrodowiskowych Ÿróde³ zanieczyszczeñ

i poprawne obliczenie wk³adu tych Ÿróde³ w ca³kowit¹ masê zanieczyszczeñ. Wspomniane metody s¹ wa¿ne

jako Ÿród³o informacji przy ocenie ryzyka i przy opracowywaniu procedur decyzyjnych.

S³owa kluczowe: chemomometria, chemia œrodowiska, eksploracja danych, okreœlanie Ÿróde³
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